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DDC 539.3:551.243 

ON THE CRITICS FOR THE U#SET OF ~TIO~ 
OF TWO COLLINEAR DlSlOCATION DISCONTINUITIES* 

A.S. BYEOVTSEV 

The conditions under which the motion _beqins of two collinear dislocational 
Volterra-type discontinuities, initally specified on a single straight line 
in a homogeneously isotropic elastic medium, is studied. The theory of 
invariant T.-integ?zals /l/ is used to write the criteria defining the 
beginning and direction of motion of either end of the discontinuity. The 
limiting stresses are determined and the subsequent behaviour of the whole 
system is investigated. 

Let two generalized dislocational discontinuities of unequal length and constant sudden 
change in displacement b&q, hr)==& be distributed along a aingfe straight line.We intro- 
duce the rectangular Cartesian coordinate system in such & manner that the Or-axis coincides 
with the line on which the discontinuitfes lie, and denote hy ---I,, --I,,&l, the abscissas 
of the ends of the discontinuity. The problem is assumed to be plane. We will determine the 
critical loads which mL1st be applied to the body in order for at least one end of the dis- 
continuity to begin to move. The problem in question is an analog of the problem discussed in- 
/2/ (on the equilibrium of two collinear cracks) for dislocation discontinuities. 

Let US denote by %,%I~ the components of the displacement vector along the +#,I axes 
respectively, and by u~,s,,,,.s~~. a,. s~,~o, the stress tensor components. We also denote the 
set of internal points of tha segments (-_b -13 and (h, l3of the Oz-axis by t, and the set of 
points of the Or-axis outside these segments by Af. The boundary conditions of the problem 
have the form 

(1) 

Problem (1) can be written in the form of the sum of the symmetric, skew-symmetric and 
anti-plane problems, by expanding the vector b&,br, bd in three terms 4 lb,, 0, 0). 4 (0, 4. Oh bS 
(O,O,b& The boundary conditions will have the form (2), (3) and (4) for the skew-symmetric, 
symmetric and antiplane problems respectively 

u, * ‘/,bt, a, = 0 OR L; u, - 0, w - 0 OXI hf 
12) 

~y~~/.b,.a~~OonL;~~O,ff;,=OOn~ (3) 
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u, =&b80nL; u,=OonM (4) 

We will write the general representation of the solutions of the equilibrium equations 
in terms of the complex potentials Wg1-s) (i-i,2,3) 131: thus: 

2&b* = ‘I, (x + 1) lm 101 -i- B Re w, (5) 
~Gu,=--(x+1 ~e~I-~ImW~ 
o,=21mWt+yReWI', %= -_~R~WI' 
Cl 2y= ReW~-~IIm W' 

for skew-symmetric problems, 

(6) 

(7) 

for the antiplane case. Here uti' (a) = wi (rf (8 = i, 2,3); X- 3-4~ for a plane deformation, 
* = (b4v)l(i + v) 

forthegeneralised planestateofstesr, G is the shear modulus, v is Poisson's ratio, and the 
prime denotes differentiation with respect to s. 

From (2)-(7) we obtain the Dirichlet problem 

2% A*=- 
n(*+f) 

(i=i,2), A+$. 

The solution of (8) has the form 

Substituting (9) into (S)-(7) we obt ain the following stress field for the generalized 
dislocation discontinuities: 

o=u((x - 16, Y) - (f (* - ia, #) + 0 (2 -t- I,, I) - rJ (2 + l,, #) 

where the components of the stresses o(z, p) have the form 

o,=r--1[-A~sinp,(2+cos2~)+A~oos~cos2~1 
qw=?--'I--A,sincpccw2~+A,ccscp(2-~2~)l 

o,= T-~~~~(A,~~+A*~~), (I*= +AA,um.g, 
a,---r-'A,aisg, 

r=Y'd, cp~arCt&- 

The onset and direction of the motion of any end of the dislocation discontinuities 
be found using the invariant T- integrals /l/ 

Tk" IUnx-'+ju~,~a&dR S f 

(10) 

(11) 

Will 

(12) 

Here U is the elastic potential of unit volume, LI is an arbitrary small contour embrac- 
ing the end of the dislocational discontinuity in question, PQ. are the components of the unit 
vector normal to the contour, and double indexing with the obvious meaning (1,2,3)-(2, r,z) is 
used. 

We assume that an external stress field with components ai? is applied to the body at 
infinity. Then relations (lo)-(12) yield the following expressions for the T-integrals 
for every end of the dislocational discontinuities: 

I’,‘” I= b, (& f A$“) + b, (ah -f- A,+‘) + cri (G;~ + A,+) 

I7 u It = - b, (a; + A&) - b% (a;, + A,+“) - bso; 

(13) 

where 

(14) 



Here +and s. denote the lengths of the left and right discontinuity while 'I~ is the distance 
between them. 

The condition f@r the onset of motion of the end of a discontinuity can he written in 
the form IrI-r, (when jrI<r,, the end of the discontinuity will be at rest). Here f= 
W.-i-U. fG is the experimentally determined constant of the medium. 

The direction of n&ion of the ends of the discontinuity is given by the expression 

Let us study in more detail the case when 4+0, q= be= 0, 0~*+0, 4p" =G~~=u~~=~J~~=O, 

i.e.,Cha sk;earmtric discontinuities axe acted upon by tangential stresses only. Such dis- 
continuities are of interest in theoretical seismology in modelling the processes taking place 
in the danger zone prior to au sarthquake. In this case we find that 

Ii r, ==o. 
for all tips, i.e. at the initial stage the discontinuities can move only along the &-axis 
on which they are situated. 

Relations (13) and (14) show that the values of the r -integrals depend essentially on 
the size of the discoutinuities and the distance between them. Let us assume that al*%* 
i.e. consider the case when a finite discontinuity interacts with a semi-infinite one. Then 
fraa (14) wa obtain 

and from (13) 

(15) 

The estimates (15) show clearly +ht when a,O-0, the critsrion for the onset of pro- 
pagation of the discontinuity (depending on the parameters of the discontinuities themselves) 

r, = hAJ" U-61 

will hold, in the first instance, for the end with abscissa -la, then for the point It, and 
finally for 1,. If on the other hand the discontinuity parameters are such that the critetion 
(16) does not hold when G&-O, then the body may be in a state of equilibrium provided that 
additional stresses u& are applied to it. Then the magnitude of the limiting stresses uW*, 
for which it becomes possible that the ends with abecissa--r, axmt predisposed to move will do 
so, is given by the relation 

%a!'= tr, - ~M"-%fb, (17) 

Thus the interaction between a semi-infinite discontinuity with a discontinuity of finite 
length can be described as follows. When the exterual stress field UN' is increased, the 
first to move will be the end of the semi-infinite discontinuty (when the stressss reach the 
value UJ giveu by the formula (17)). This end will move towards the finite discontinuity, 
the distance between the ends of the discontinuities will decrease and hence @: will increase, 
It follows that at some instant when the condition 

begins to hold, the left end of the small discontinuity will begin to move towards the movjng 
end of the. smai-infinite discontinuity. It is only after both ends merge (i.e. after the 
barier separating them is breached), that uotion of the right end of the smallex discontinuity 
will become poslrible. 

The rate of motion of one end relative to the other will increase in a step-wise manner. 
This implies that, in particular, the rate of joining or merging of the discontinuities say 
be greater than the velocity of the longitudinal and transverse waves within the odium. 
Finally, we find that when we have a large arid a small discontinuity sspatated by an arbitmr- 
ily large distance, the larger discontinuity will always show a tendeuq to merge with the 
smaller one. At the smes time, the small discontinuity will behave with complete independence 
until the distance sepaxating the discontinuities beccm@s less than its length, wbereupofi it 
will begin to mzzve touards a merger with the large discontinuity. The effect of the inter- 
action between the dislocation diecontinuities is analogous to that of the interaction between 
collinear cracks /2/ and serves as another obvious confirmation of the fact that the behaviour 
of the dislocational discontinuities is formally analogous to the behaviour of cracks, a fact 
demu@&rated by the analogsofthe Griffith and Yoffe problems for dislocational discontinuit- 
ies in 14-W. 
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OM THE RESIDER TERMS IN THE FLOUTS FOR THE 
FREQUENCY DISTRIBUTION OF SHELL OSCILLATIONS* 

A.G. ASLANIAN 

The frequency distribution of free oscillations of thin elastic shells in 
vacua and in contact with a liquid, is studied. Estimates for the remainder 
terms in the asymptotic formulas for the oscillation frequency distribution 
are substantially improved. In the case Of a sh811 in COntaCt with a 
liquid, the second t8np of the asymptotics 16 separated. 

Free oscillations of a thin elastic shell are described by a system of three differential 
equations in terms of the displacements /I/ 

(UiW~i_L) u-lu, X=(i -@)pJz-W (1) 

The vector function ~rfa,&). (a,f))eaG satisfies certain selfconjugate boundary conditions ar 
the shell boundary, fi is the shell thickness (small paxameter), ?. is the spectral paxameter 
and o) is the natural shell oscillation frequency. The remaining notation is taken from /'I/. 

Let IQ,&) be the spectrum distribution function of problem (I) (equal to the number of 
eigenvalues less than the given 1). Using the variational method as h-+0 we obtain /l/ 
the asymptotic formula 

nh (W - h-1 1% (W + G (01 (2) 

Q (8, at 81 = (i - 0s) [It,-1 (a, &sin* 9 + R,-x (a, &c&8]* 

where x is a positive number. A rough lower estimate was given for it in /1,2/. 
my improving the variational technique, we succeeded in showing that when 

A>@.W~tff,e,fl), @=i%% (a,@)=0 (3) 

formula (2) holds with x=x/, -8, for arbitrarily small positive t. 
If condition (3) does not hold, then the value of x.decraases and depends on tbe amount 

of "degeneration" of the function q=L- 0 (6, a,BL Fox example, if qa'* is integrable, 8a 10, 
Zn), (e,fi)e+G (simple degeneration), foxmula (2) holds for x- J/22. 

In the same manner we can improve the estimate of the rem&index in the problem of free 
oscillations of a shell in contact with an ideal compressible liquid j3/. In this problem we 
add to the right-hand side of the third equation of (1) the texm --h-M-%Pfs (the inertia of 
the liquid). The potential pi(z,y,x) of the displacement of the liquid occupying a finite 
volume F, satisfies the Helmholts equation 

ATi-k&Q=& (z,j/,tf~V, k,= 
E 

(1 - 0”) P$, 


